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Abstract The maximum-friction surface is a source of singular solution behaviour for several rate-independent
plasticity models. Solutions based on conventional viscoplastic models do not show such behaviour. For a class of
materials, there is a range of temperatures and/or strain rates where a necessity of the consideration of rate effects
depends on the area of application of the final result. Hence, the same material under the same conditions can
be represented by either rate-independent or rate-dependent models. In this case, a reasonable requirement is that
viscous effects should not be very significant and, in particular, the qualitative behaviour of viscoplastic solutions
should be similar to that of solutions based on rate-independent models. The present paper deals with this issue by
means of the solution for simultaneous shearing and expansion of a hollow cylinder under plane-strain deformation.
One of the goals of the paper is to show that there is a class of viscoplastic models satisfying the requirement formu-
lated. The other goal is to find an asymptotic representation of the solution in the vicinity of the maximum-friction
surface and compare it with the rigid perfectly plastic solution.

Keywords Asymptotic analysis · Friction · Singularity · Viscoplasticity

1 Introduction

The behaviour of rigid plastic solutions in the vicinity of maximum-friction surfaces depends on the constitutive
equations chosen and can cause numerical difficulty. For pressure-independent material models, the maximum-
friction law postulates that the friction stress is equal to the local shear yield stress. The simplest model of this class,
the rigid perfectly plastic solid, leads to singular velocity fields in the vicinity of maximum-friction surfaces where
some components of the strain-rate tensor and the equivalent strain-rate (the second invariant of the strain-rate
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tensor) approach infinity [1]. When finite-element methods are used, such behaviour of the velocity field requires,
in general, special shape functions in finite elements adjacent to the friction surface. The same asymptotic behaviour
of the velocity field in the vicinity of maximum-friction surfaces occurs when the double-shearing model [2] is
adopted [3,4]. This model is used for describing the deformation of granular materials. It is interesting to mention
that other models, also used for such materials, can lead to qualitatively different behaviour of the velocity field
near the maximum-friction surface [5–8]. Of several models of pressure-dependent plasticity considered in these
papers, the double-slip and rotation model [9], in addition to the double-shearing model, only leads to the same
solution behaviour near the maximum-friction surfaces as the model of rigid perfectly plastic solids.

Viscoplastic models can be divided into two groups. An important feature of conventional models, such as
Bingham solids, is that σY → ∞ as ξeq → ∞ where σY is the yield stress in tension and ξeq is the equivalent strain
rate. For such models, the maximum-friction law is equivalent to the regime of sticking at the friction surface
[10], and such a regime of friction leads to a boundary layer near the friction surface but all components of the
strain-rate tensor are bounded [11]. However, the assumption that σY → σs <∞ as ξeq → ∞ (models of the second
group) can significantly change the solution behaviour near the maximum-friction surfaces. In particular, it has
been demonstrated in [12] by means of the exact solution to a particular plane-strain problem that the velocity field
can be singular and its behaviour can be the same as in the case of rigid perfectly plastic solutions. Moreover, it has
been shown that any set of experimental data can be approximated by a model of the second group with the same
accuracy as by a conventional model. A disadvantage of the solution considered in [12] is that the normal strain
rates vanish at the friction surface (in a local Cartesian coordinate system one axis of which is orthogonal to the
friction surface). This may have a significant effect on the solution behaviour at the friction surface [13]. Therefore,
a new problem free of the aforementioned disadvantage is formulated and solved in the present paper. Then, an
asymptotic analysis of the solution is carried out to determine the behaviour of the velocity field in the vicinity of
the friction surface.

The research is motivated by both fundamental and applied aspects. On the fundamental side, it is of interest to
understand the dependence of the relation between σY and ξeq on the asymptotic behaviour of velocity fields in the
vicinity of maximum-friction surfaces. On the applied side, a novel theory for describing the evolution of material
properties can be developed based on the strain-rate intensity factor [14]. This factor has been introduced for rigid
perfectly plastic solids in [13] and is the coefficient of the leading singular term in an asymptotic expansion of the
equivalent strain rate in the vicinity of maximum-friction surfaces. Since the equivalent strain rate is involved in
many evolution equations for material properties, the singular behaviour of the velocity field predicts a very large
gradient of these properties near friction surfaces, which is in qualitative agreement with experiment (for exam-
ple, [15]). However, most of such experimental results have been obtained for deformation processes at elevated
temperatures where the effect of viscosity should be taken into account. Therefore, viscoplastic models that permit
singular behaviour of the velocity fields may play an important role in applications of the aforementioned theory
based on the strain-rate intensity factor to practical problems.

2 Material model

In cylindrical coordinates rθ z, the constitutive behaviour of isotropic visco-rigid/plastic incompressible material
under plane-strain deformation (ξzz is one of the principal strain rates and ξzz = 0) may be described by the
following equations (this system of coordinates has been chosen for further convenience)

srθ =
(
σY /

√
3
)

sin 2ϕ, srr = −sθθ = −
(
σY /

√
3
)

cos 2ϕ, (1)

ξrθ = ξθθ tan 2ϕ, (2)

ξrr + ξθθ = 0, (3)

where srr , sθθ and srθ are the deviatoric portions of the stress tensor, ξrr , ξθθ and ξrθ are the components of the
strain-rate tensor, and ϕ is an auxiliary function which may depend on r and θ, 0 ≤ ϕ ≤ π/4. The yield stress in
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Qualitative behaviour of viscoplastic solutions in the vicinity of maximum-friction surfaces 145

tension, σY , is a prescribed function of the equivalent strain rate defined by

ξeq = √
(2/3) ξi jξi j . (4)

The equivalent stress is defined by

σeq = √
(3/2) si j si j . (5)

The system of equations (1) to (3) is equivalent to Mises-type yield criterion, σeq = σY , and its associated flow rule.
Of special interest for the purpose of the present paper are constitutive laws in which σY → σs < ∞ as ξeq → ∞
where σs can be named the saturation stress by analogy to a somewhat similar quantity in strain-hardening materials
[16]. The maximum-friction law for such materials is given by

τ f = σs/
√

3, (6)

at sliding. Here τ f is the friction stress. In the case of the simplest visco-rigid/plastic models, the yield stress in
tension depends on the equivalent strain rate only. Then, without the loss of generality, the relation between σY and
ξeq can be written in the form

σY = σs�
(
ξeq/ξ0

) = σs�(η) , (7)

where η = ξeq/ξ0 and ξ0 = constant. It is assumed that the function �(η) is given and satisfies the following
conditions:

�(0) = φ0 ≡ σ0

σs
< 1, lim

η→∞ �(η) = 1, �′(η) ≡ d�

dη
> 0, η ∈ (0,∞) (8)

with σ0 being the yield stress in tension at ξeq = 0.
The system of equations (1) to (3) should be supplemented with the equilibrium equations. For the state of stress

independent of θ these equations have the form

dσ

dr
+ dsrr

dr
+ srr − sθθ

r
= 0,

dsrθ

dr
+ 2srθ

r
= 0, (9)

where σ is the hydrostatic stress.

3 Formulation of the boundary-value problem

Consider an infinite circular hollow cylinder of internal radius a and external radius b subject to a system of loading
consisting of normal and tangential stresses on its internal and external radii (Fig. 1). Due to this system of loading
the cylinder is both expanded and twisted. It is convenient to introduce a cylindrical polar coordinate system with
its z-axis coinciding with the axis of symmetry of the cylinder. The state of stress and strain-rate are plane with
the plane of flow being orthogonal to the z-axis. The rate of expansion of the internal radius will be denoted by
ȧ ≡ da/dt . The external radius is fixed against rotation. Therefore, the velocity boundary conditions are

u = ȧ, at r = a (10)

and

v = 0, at r = b. (11)

Here u and v are the radial and circumferential velocities, respectively. One of the stress boundary conditions is

σrr = −σs pa < 0, (12)

at r = a. Here pa > 0 is given, but its value is not essential for understanding the general features of the solution. It
is, however, assumed, for consistency of the problem definition, that the value of pa is such that σrr < 0 at r = b.
The final boundary condition is the friction law at r = a. Its specific form depends on the regime of friction, namely
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Fig. 1 Configuration of the
process of deformation

whether the material is sliding or sticking at the inner boundary. For sliding the value of the shear stress at r = a is
given by (6). For sticking the circumferential velocity is prescribed:

v = −ut , (13)

at r = a. In the case of expansion of the cylinder ξθθ > 0. Therefore, it follows from (2) that ξrθ > 0 since it has
been chosen that 0 ≤ ϕ ≤ π/4. The inequality ξrθ > 0 requires ut > 0. The quantity ut can be regarded as the
circumferential velocity of points of the tool surface assuming that the tool is an expanding and rotating rod inserted
into the hole of the cylinder. The rate of rod expansion is indeed equal to ȧ.

The model under consideration is history-independent because dynamic effects are not taken into account in
the present analysis. Hence, it is sufficient to consider the instantaneous solution, i.e., for a specific geometry, to
understand its general features.

Obviously, the problem formulated is not feasible for practical realization. However, it is a remarkable problem
for a theoretical study of solution behaviour in the vicinity of frictional interfaces since its solution can be obtained
in a closed form in terms of ordinary integrals without any approximation of the boundary conditions as in the case
of more realistic problems such as compression of a block between two parallel, rough plates or flow of plastic
material through converging channels. The present problem has already been successfully used for understanding
some general features of solution behaviour for other material models [7].

4 Solution

The state of strain is plane and the solution is independent of θ . Therefore, equations (9) are valid and the normal
strain rates are expressed in terms of the radial velocity as ξrr = du/dr and ξθθ = u/r . Then, the radial velocity is
determined from the incompressibility equation (3), with the use of the boundary condition (10), and the stress srθ

from the equilibrium equation (9)2 and (1)1 in the form

u = ȧ/ρ, (14)

srθ = σY√
3

sin 2ϕ = σsτ√
3ρ2

, (15)

where τ > 0 is an arbitrary function of a (constant of integration) and ρ = r/a. From (7) Eq. 15 can be transformed to

�(η) sin 2ϕ = τ

ρ2 . (16)
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Qualitative behaviour of viscoplastic solutions in the vicinity of maximum-friction surfaces 147

The equilibrium equation (9)1, by use of (7) and (12), determines the hydrostatic stress in the form

σ

σs
= 2√

3

ρ∫

1

�(η) cos 2ϕ

ρ
dρ + �(η) cos 2ϕ√

3
− pa . (17)

The equivalent strain rate can be found by means of (2), (4) and (14) as

ξeq = 2√
3

ȧ

aρ2 cos 2ϕ
. (18)

Substitution of (18) in (16) gives

�

(
2√
3

ȧ

aξ0ρ2 cos 2ϕ

)
sin 2ϕ = τ

ρ2 . (19)

If τ were known, this equation would determine ϕ as a function of ρ in implicit form with a being a parameter.
Finally, integration of (2) with the use of the boundary condition (11) and the relation 2ξrθ = dv/dr − v/r gives

v

ȧ
= 2ρ

ρ∫

b/a

tan 2ϕ

ρ3 dρ. (20)

The solution thus obtained satisfies Eqs. (1)–(3), (9) and the boundary conditions (10)–(12). It contains an
undetermined function τ (a) which must be found from the friction boundary condition.

Consider the solution under sticking conditions. Combining (13) and (20) leads to

ut

ȧ
= 2

b/a∫

1

tan 2ϕ

ρ3 dρ. (21)

The equation for τ is obtained by excluding ϕ in (21) by means of (19). This equation may or may not have a
solution depending on b/a, ut/ȧ and the form of function �(η).

If (21) has no solution, it is necessary to consider the regime of sliding for ρ = 1. In this case, it follows from
(6), where τf should be replaced with srθ , and (15) that a necessary condition is

τ = 1. (22)

Therefore, Eq. (19) can be rewritten in the form

�

(
E0

ρ2 cos 2ϕ

)
sin 2ϕ = 1

ρ2 , (23)

with E0 being the dimensionless parameter, E0 = 2ȧ/(
√

3aξ0). Substitution of (6) in (5) shows that σeq = σs and
srr = sθθ = 0 at the friction surface. Therefore, it follows from (1) that in the case of sliding

ϕ → π/4 as ρ → 1, (24)

and, then, from (18) that

ξeq → ∞ as ρ → 1. (25)

5 Asymptotic analysis

Equation (22) provides a necessary condition for the regime of sliding to occur. However, in general, it is not a
sufficient condition. In other words, the regime of sticking may occur if (22) is satisfied. Therefore, the goals of
the asymptotic analysis completed in this section are to determine the precise conditions for each friction regime
(sticking and sliding) to occur and to derive the asymptotic representation of the equivalent strain rate in the vicinity
of the maximum-friction surface. It is assumed in this section that E0 �= 0 and E0 < ∞.
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Since ϕ ∈ (0, π/4), this quantity can be eliminated between (16) and (19) to arrive at

ρ4 = τ 2

�2 (η)
+ E2

0

η2 , 1 ≤ ρ ≤ b

a
, (26)

This equation determines η as a function of ρ and τ in implicit form. In particular, it follows from (26) that:
(

τ 2�′

�3 + E2
0

η3

)
dη = τ

�2 dτ − 2ρ3dρ. (27)

Because of the restrictions imposed on the function �(η) and specified in (8), the coefficient of dη in (27) is positive.
Therefore, it follows from (27) that

∂

∂ρ
η(ρ, τ ) < 0,

∂

∂τ
η(ρ, τ ) > 0 (28)

at τ > 0 and 1 < ρ < b/a. A combination of (8) and (28) allows one to conclude that the solution to (26) exists if
and only if

0 ≤ τ ≤ 1. (29)

This conclusion immediately follows from (1), (7), (8) and (15) as well.
Excluding ϕ in (20) by means of (16) and (19) it is possible to get at ρ = b/a

U (τ )

ȧ
= �(τ) = 2

E0

b/a∫

1

√
ρ4η2 − E2

0dρ

ρ3 . (30)

Here η is understood as a function of ρ and τ due to (26) and U is the value of the circumferential velocity at
ρ = b/a and any assumed value of τ in the interval (29). It follows from (28) that the integrand in (30) is a
monotonically increasing function of τ . As a result, the introduced parameter �(τ) monotonically increases from
0 to �cr determined from (30) as

�cr = lim
τ→1

�(τ) = 2

E0

b/a∫

1

χ(ρ)

√
ρ4 − E2

0/χ2(ρ)dρ

ρ3 , (31)

where χ(ρ) is defined from (26) in the following implicit form by putting τ = 1 and replacing η with χ

ρ4 = 1

�2 (χ)
+ E2

0

χ2 . (32)

The corresponding value of U is the maximum possible circumferential velocity at ρ = b/a, Umax = ȧ�cr.
By definition, the regime of sticking at r = a occurs if it is possible to find such a value of τ that U = ut .

Therefore, the condition �cr = ∞ is equivalent to the statement that the regime of sticking occurs at any value
of ut . At �cr < ∞, the two friction regimes (sticking and sliding) are separated by the following inequalities

• sticking occurs at the surface r = a if ut < Umax,
• sliding occurs at the surface r = a if ut > Umax.

The special case ut = Umax corresponds to the transition from one of the regimes to the other and can be regarded
as a special case of sticking since there is no velocity jump at the interface. In this special case and in the case of
sliding χ(ρ) ≡ η (ρ, 1). It is obvious from (31) that the value of �cr depends on the parameters involved in its
definition, b/a and E0, and the function �(η). It is shown below that the behaviour of �(η) as η → ∞ plays the
crucial role in separating the two cases, �cr < ∞ and �cr = ∞.

Consider the behaviour of the function χ(ρ) introduced in (32) and defined in interval (1, b/a). It monotonically
decreases from infinity, χa = χ(1+) = ∞, to its minimum value χb = χ(b/a) > E0

√
1 + ε > 0 where ε > 0.

This means that for any selected function �(η) satisfying the conditions (8) and for any fixed set of parameters b/a
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and E0, the value of χb is always separated from E0. Thus, the argument of the square root in the integrand in (31)
is always positive and (31) can be rewritten, with the use of (32), in the following equivalent form

�cr = 2

E0

b/a∫

1

χ(ρ)dρ

�(ξ)ρ3 .

This makes it possible to estimate the value of �cr = �cr (E0) as

2

E0

a3

b3

b/a∫

1

χ(ρ)dρ < �cr <
2

E0φ0

b/a∫

1

χ(ρ)dρ. (33)

In other words, the value of �cr approaches infinity if and only if

b/a∫

1

χ(ρ)dρ = ∞.

Thus it is completely determined by the behaviour of the function χ(ρ) in the vicinity of the point ρ = 1, which,
in turn, depends on the behaviour of the function �(η) at infinity. The subsequent general analysis is restricted to
a class of functions defined by

�(η) = 1 − φ∞η−β + O
(
η−β−δ

)
, η → ∞, (34)

with β > 0, δ > 0 and φ∞ > 0. Then, it follows from (32) that

χ(ρ) = E0

2
(ρ − 1)−1/2 + B(ρ − 1)α + o

[
(ρ − 1)α

]
, ρ → 1, β > 2, �cr < ∞, (35)

χ(ρ) = 1

2

√
E2

0 + 2φ∞(ρ − 1)−1/2 + O
[
(ρ − 1)−1/2−δ

]
, β = 2, �cr < ∞, (36)

χ(ρ) =
(

φ∞
2

)1/β

(ρ − 1)−1/β + O
[
(ρ − 1)−1/ max{2,(β+δ)}] , ρ → 1, 1 < β < 2, �cr < ∞. (37)

χ(ρ) =
(

φ∞
2

)1/β

(ρ − 1)−1/β + o
[
(ρ − 1)−1/β

]
, ρ → 1, 0 < β ≤ 1, �cr = ∞. (38)

where

B =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

− 3
8 E3

0 , β > 4,

− 1
8 E3

0

(
3 − φ∞ 16

E4
0

)
, β = 4,

1
8 E3

0φ∞
(

2
E0

)β

, 2 < β < 4,

α =
{ 1

2 , β ≥ 4,

(β − 3)/2, 2 < β < 4.

It is worth noting that the second term on the right-hand side of (32) plays the leading role in the case of (35)
and the first term in the case of (37) and (38). The case of (36) is intermediate when both terms are important
and influence the leading asymptotic term. As a result of the analysis just completed, it is possible to divide the
constitutive equations of type (34) into the two groups according to the value of β:

• �cr < ∞ if 1 < β < ∞,
• �cr = ∞ if 0 < β ≤ 1.

A property of material models that belong to the latter group is that the regime of sticking occurs at any value of ut

because ut/ȧ < �cr = ∞. The regime of sticking for material models that belong to the former group is obtained
for values of ut satisfying the inequality ut/ȧ < �cr (the set of parameters at which ut/ȧ = �cr is tentatively
excluded from consideration). In each of these cases τ = τ(ut ) < 1 (otherwise, the definition for �cr would imply
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ut/ȧ = �cr) and ξeq < ∞, as follows from (15) and (18). These cases will not be considered in the remainder of
the present paper.

Assume that τ = 1. Then, ut/ȧ > �cr or ut/ȧ = �cr and, therefore, material models that belong to the first
group only (1 < β < ∞) should be included in analysis. The inequality corresponds to the regime of sliding, and
the equality to the transition between the friction regimes. It follows from (15) that cos ϕ = 0 at ρ = 1. Then,
Eq. (18) shows that the equivalent strain rate is singular near the maximum-friction surface, ρ = 1, and its behaviour
can be found from (35)–(37) since

ξeq(ρ) = ξ0χ(ρ), (39)

at τ = 1. Because of the range of β of interest, Eq. (38) has been excluded from (39). Substitution of (35)–(37) in
(39) gives

ξeq(ρ) = ȧ√
3a

(ρ − 1)−1/2 + ξ0 B(ρ − 1)α + o
[
(ρ − 1)α

]
, ρ → 1, β > 2, (40)

ξeq(ρ) =
√

1

3

(
ȧ

a

)2

+ φ∞ξ2
0

2
(ρ − 1)−1/2 + O

[
(ρ − 1)−1/2−δ

]
, ρ → 1, β = 2, (41)

ξeq(ρ) = ξ0

(
φ∞
2

)1/β

(ρ − 1)−1/β + O
[
(ρ − 1)−1/ max{2,(β+δ)}] , ρ → 1, 1 < β < 2, (42)

where α and B involved in (40) were defined after (38).
It is indeed possible to propose functions that do not belong to the class of functions introduced in (34) but lead

to singular behaviour of the equivalent strain rate in the vicinity of maximum-friction surfaces. For example,

�(η) ∼ 1 − φ∞ exp(−λη), η → ∞, (43)

�(η) ∼ 1 − φ∞
η logγ η

, η → ∞, γ > 1. (44)

For the function introduced in (43) the asymptotic representation of the equivalent strain rate shown in (40) is valid.
In the case of the function given by (44) the asymptotic representation of the equivalent strain rate is

ξeq(ρ) = O
[
(ρ − 1)−1 log−γ (ρ − 1)

]
, ρ → 1, γ > 1. (45)

6 Extreme cases

There are four extreme cases of great interest, namely (i) ȧ → 0, ξ0 is fixed and, therefore, E0 → 0, (ii)
ξ0 → ∞, ȧ is fixed and, therefore, E0 → 0, (iii) ξ0 → 0, ȧ is fixed and, therefore, E0 → ∞, and (iv) σs → σ0,

ξ0 and ȧ are arbitrary.

6.1 Case (i)

For ȧ = 0 the statement of the problem under consideration is reduced to that of the Couette flow studied for
viscoplastic models with a saturation stress in [12]. It is of interest to compare the latter solution and the solution
given in the present paper as ȧ → 0. It has been shown in [12] that the solution for the Couette flow depends on
the value of parameters b/a and φ0. In particular, plastic deformation may occur in the entire interval ρ ∈ (1, b/a)

or a part of the material can be rigid. For the generalized Couette flow considered in the present paper, Eq. (32)
always has a solution and therefore no rigid zone can exist. However, in the particular case of E0 = 0 it immediately
follows from this equation that the solution exists if and only if b/a ≤ 1/

√
φ0.

To illustrate the solution, the function �(η) has been chosen in the form

�(η) = φ0 + ηβ

1 + ηβ
. (46)
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Qualitative behaviour of viscoplastic solutions in the vicinity of maximum-friction surfaces 151

Fig. 2 Variation of the dimensionless equivalent strain rate with ρ for different values of E0 (= 0.001, 0.01, 0.1, 1, 10, 100) and
β (= 1.5, 2, 5). The dotted line corresponds to the solution for Couette flow

Therefore, φ∞ = 1 − φ0. For b/a = 4 and φ0 = 0.1 the radial distribution of the dimensionless equivalent strain
rate, ξeq/ξ0, is shown in Fig. 2 for different values of the parameters β and E0. The case under consideration
(E0 → 0) is illustrated by curves corresponding to smaller values of E0.

In the case of (46) the solution to (32) for E0 = 0 exists only if ρ varies in the interval 1 < ρ < 1/
√

φ0, which
is consistent with the solution for the Couette flow given in [12] and shown by dotted lines in Fig. 2. As E0 → 0
the solution to Eq. (32) tends uniformly to that for E0 = 0 subject to the condition ρ ≤ √

φ0.
Passing in (31) to the limit as E0 → 0, one may show that

�cr(E0) = 1

E0
�∗(b/a, β, φ0) + O (1) , E0 → 0, (47)

where ω̄∗ is independent of E0. The asymptotic representation (47) immediately follows from (33) and an analysis
of the leading terms in the asymptotic estimates (36) and (37). In (35), the leading term vanishes as E0 → 0 and a
more accurate analysis of (32) has been carried out to prove (47). The dependence of �cr on E0 predicted by (47)
is illustrated in Fig. 3a where the result of a numerical integration in (31) is shown in logarithmic coordinates for
b/a = 4, φ0 = 0.1 and different values of β. It is seen that all curves become almost straight lines for sufficiently
small values of E0. In Fig. 3b, the dependence of �cr on φ0 is shown for b/a = 4, E0 = 0.1 and different values
of β.
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152 S. Alexandrov, G. Mishuris

Fig. 3 Variation of �cr introduced in (31) with E0 for φ0 = 0.1 (a) and with φ0 for E0 = 0.1 (b) for different values of β (= 1.01,
1.5, 2, 5)

It follows from (47) that �cr → ∞ as E0 → 0 not only for 0 < β ≤ 1, as in the general case, but also for 1 < β < ∞.
In contrast to the general solution, the condition ω̄cr → ∞ may not lead to the regime of sticking since ȧ → 0 in
the case under consideration and, therefore, the magnitude of Umax can be bounded. In particular, it follows from
(47) that

Umax = �crȧ ∼
√

3

2
aξ0�∗, E0 → 0. (48)

Thus, the regime of sliding occurs for sufficiently large values of ut and for any value of β in the range 1 < β < ∞.
This is consistent with the corresponding result for ȧ = 0 obtained in [12].

The asymptotic representations of the equivalent strain rate as ρ → 1 given in (41) and (42) are valid in the case
under consideration and coincide in the limit with the corresponding representations obtained in [12] for 1 < β ≤ 2.
The domain of validity of the asymptotic representation (40) vanishes as ȧ → 0. This means that other asymptotic
representations accounting for both small parameters, ρ − 1 and ȧ, should be constructed for β > 2. No attempt
has been made to get such representations.

6.2 Case (ii)

In this case the material response given in (7) approaches the function

σY =
{

σ0 for ξeq ≤ ξ∗ < ∞,

σs for ξeq → ∞.
(49)

Therefore, for any finite value of ξeq ≤ ξ∗ < ∞ the viscoplastic response approaches the classical model of rigid
perfectly plastic solids with σY = σ0. However, in the problem under consideration ξeq → ∞ in the vicinity of
the maximum-friction surface at sliding. It is shown below that the solution obtained does not converge to the
corresponding rigid perfectly plastic solution. The latter is given, for example, in [7].

The asymptotic representations (47) and (48) are valid since the only condition used for deriving these repre-
sentations was E0 → 0. In particular, Eq. (48) shows that Umax → ∞. The latter is equivalent to the statement
that the regime of sticking occurs for any value of ut . It is not consistent with the rigid perfectly plastic solution as
well as with the previous extreme case. In the present case, an effect of increasing ut is that the equivalent strain
rate increases within a significant range of ρ, whereas the rigid perfectly plastic solution requires a localization of
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Fig. 4 Variation of the dimensionless equivalent strain rate introduced in (50) with ρ for different values of E0 (= 0.001, 0.01, 0.1,
1, 5) and β (= 1.5, 5). The dashed line corresponds to the rigid perfectly plastic solution

plastic deformation in the vicinity of the maximum-friction surface. To illustrate such behaviour of the solution, it
is convenient to introduce a new dimensionless equivalent strain rate in the form

ζ (ρ) =
√

3aξeq

2ȧ
. (50)

Its dependence on material and process parameters is shown in Fig. 4 for the function �(η) given in (46) for
b/a = 4 and φ0 = 0.1 (curves corresponding to smaller values of E0). The smaller the value of E0, the larger the
value of ut needed to get the regime of sliding.

The difference in the interpretation of (48) for Case (i) and Case (ii) comes from the condition that ξ0 approaches
infinity in the case under consideration, but not in Case (i).

The asymptotic behaviour of the equivalent strain rate given in (40) to (42) is not valid in the case under consid-
eration in the sense that for any large value of ut there exists such a small value of E0 that the regime of sticking
occurs.

6.3 Case (iii)

In this case the material response given in (7) approaches the function

σY =
{

σ0 for ξeq → 0,

σs for ξeq ≥ ε∗ > 0.
(51)

Therefore, for any finite value of ξeq ≥ ε∗ the viscoplastic response approaches the classical model of rigid per-
fectly/plastic solids. However, in contrast to Case (ii), the tensile yield stress of this rigid perfectly plastic solid
should be σs .

The asymptotic representations (35) and (36) show that χ (ρ) may approach infinity in a finite interval 1 < ρ <

1+ε as E0 → ∞ because the coefficients of the leading asymptotic terms may tend to infinity. Therefore, it is more
convenient for an asymptotic analysis of the solution to use the function ζ (ρ) introduced in (50) instead of χ (ρ).
Then, it follows from (32) that

ρ4 = 1

�2(ζ E0)
+ 1

ζ 2 . (52)

Note that any possible solution of (52) is separated from zero. In fact, ρ2 > ζ−1 or ζ >
√

a/b at least. However,
this means that �(ζ E0)→ 1 uniformly in ρ ∈ (1, b/a) as E0 → ∞ (see (51) and (7)). In other words, in the case
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Fig. 5 Variation of the dimensionless equivalent strain rate introduced in (50) with ρ for different values of φ0 (= 0.1, 0.3, 0.5, 0.7,
0.9) and β (= 1.5, 5). The dashed line corresponds to the rigid perfectly plastic solution

of E0 → ∞ (52) transforms to

ρ4 = 1 + 1

ζ 2 . (53)

The solution (53) coincides with the rigid perfectly plastic solution. In particular, it follows from (53), that, as
E0 → ∞, the value of �cr determining the boundary between the regimes of sticking and sliding (see the discus-

sion after (32)) is given by �cr (E0) →
√

1 − (a/b)4. It coincides with the rigid perfectly plastic solution as well.
Such behaviour of �cr (E0) can be seen in Fig. 3a at large values of E0. The convergence of the viscoplastic solution
to the rigid perfectly plastic solution is illustrated in Figs. 4 and 5 (in Fig. 4, curves for larger values of E0) where
the dependence of the dimensionless equivalent strain rate on ρ is shown for b/a = 4 and φ0 = 0.1 (Fig. 4) and
b/a = 4 and E0 = 0.1 (Fig. 5). The rigid perfectly plastic solution, ζ = (

ρ4 − 1
)−1/2

, is shown by dashed lines.
Thus, each of the considered viscoplastic laws with a saturation stress results in the solution whose limit is the rigid
perfectly plastic solution with σY = σs .

The asymptotic representation of the equivalent strain rate given in (40) to (42) is valid if the regime of sliding
occurs. Moreover, the main term in (40) coincides with that in the rigid perfectly plastic solution.

6.4 Case (iv)

It can be shown that in this case the convergence of the viscoplastic solution to the rigid perfectly plastic solution
takes place regardless of other properties of the viscoplastic model. To demonstrate this fact, consider Eqs. (8) and
(34) from which it follows that there exists a η∗ > 0 such that

1 − 1

η
β∗
φ∞ > φ0 or φ∞ < (1 − φ0)η

β∗ . (54)

If σ0 → σs , which is equivalent to φ0 → 1, it is possible to obtain from (54) that φ∞ → 0. Since the function �(η)

is monotonic and �(0) = φ0 → 1 as σ0 → σs simultaneously with �(η) → 1 as η → ∞, one can conclude that
�(η) → 1 uniformly as σ0 → σs . As a result, Eq. (53) holds true as σ0 → σs or, in other words, the viscoplastic
solution converges to the rigid perfectly plastic solution. To illustrate this result numerically, the distribution of the
dimensionless equivalent strain rate with respect to ρ is presented in Fig. 5 for b/a = 4 and E0 = 0.1. It is seen
that the viscoplastic solution tends to the corresponding rigid perfectly plastic solution if φ∞ → 0 (or σ0 → σs).
The largest difference between the solutions appears near the friction boundary ρ = 1.
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It immediately follows from (40) and (41) that for φ∞ = 0 the main terms coincide with those in the rigid
perfectly plastic solution. The main term in (42) whose behaviour differs from that in the rigid perfectly plastic
solution vanishes as φ∞ → 0 and, therefore, a new asymptotic representation of the equivalent strain rate should
be found in this case.

It is hypothesized that the convergence of the viscoplastic solutions to the corresponding rigid perfectly plastic
solutions as φ∞ → 0 (or σ0 → σs) is a general property of the viscoplastic model under consideration, i.e., it is
independent of the specific boundary-value problem.

7 Concluding remarks

It has been shown that the equivalent strain rate may approach infinity in the vicinity of maximum-friction surfaces
in viscoplastic solids with a saturation stress. Moreover, the asymptotic behaviour of this quantity can be the same as
in rigid perfectly plastic solutions. This may have a great effect of the solvability of classical problems of plasticity
when viscoplastic models are adopted. In particular, a generalization of the famous Prandtl problem, compression
of a block between two parallel, rough plates, on viscoplastic materials proposed in [17] is not valid in the case of
the maximum-friction law. It has been demonstrated in [18,19] that an appropriate generalization can be obtained
if viscoplastic solids with a saturation stress are adopted. Moreover, a number of results related to the asymptotic
behaviour of the equivalent strain rate in the vicinity of the maximum-friction surface obtained in that work coincide
with the corresponding results given in the present paper.

Several extreme cases have been investigated. In particular, it has been shown that the viscoplastic solution
obtained here converges to the corresponding rigid perfectly plastic solution in Case (iii) and Case (iv) but not in
Case (ii). This result can be considered as a first step towards the development of a unified theory of plasticity that
would cover a wide range of temperatures and strain rates and would include conventional theories as particular
cases. The issue of convergence is of importance for developing such a unified theory since it is obvious that the
area of applicability of this or that constitutive model is rather conditional on the specific area of application. To this
end, it is of interest to study the viscoplastic solution to a problem that involves both a maximum-friction surface
and a rigid zone. It is expected that in this case the viscoplastic solution satisfying the conditions formulated in
Case (iii) does not converge to the rigid perfectly plastic solution. This will be the subject of a subsequent
investigation.

The asymptotic behaviour found can be of importance in the area of computational mechanics. For, viscoplastic
models with a saturation stress are used in applications (for example, [20]) and friction elements are often consid-
ered separately in a finite-element analysis of metal-forming processes, even if the solution is not singular (see,
for example, [21]). Obviously, the singular asymptotic representation of the solution found in the present paper
can be accounted for in such elements that should increase the accuracy of numerical results in the vicinity of
frictional interfaces. Nevertheless, infinite strain rates frequently occur in rigid plastic solutions and it is necessary
to somehow relate such theoretical solutions and practical applications.

The specific form of the asymptotic representation of the solution depends on the asymptotic behaviour of the
yield stress as the equivalent strain rate approaches infinity and thus is beyond the range of applicability of any direct
experiment. Therefore, the coincidence of qualitative behaviour of mathematical solutions is a good argument to
choose this or that model. Using this argument for the constitutive law defined by (34), it is possible to recommend
to adopt β ≥ 2 at very high strain rates for materials whose behaviour is adequately described by a rigid perfectly
plastic model under a wide range of strain rates. It is worth noting here that a small effect of viscosity is actually
revealed in such materials at very high strain rates [22].
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